Skip to content

Listing Available Models

Learn how to discover, explore, and select models in Azure AI Foundry for your specific use cases.

Model Discovery

1. Model Categories

  • Text Generation
  • Code Generation
  • Image Generation
  • Speech Processing
  • Custom Models

```python from azure.identity import DefaultAzureCredential from azure.ai.resources import AIProjectClient from typing import Dict, List

class ModelExplorer: def init(self): """Initialize the ModelExplorer with Azure credentials.""" try: self.credential = DefaultAzureCredential() self.client = AIProjectClient( subscription_id=os.getenv("AZURE_SUBSCRIPTION_ID"), resource_group=os.getenv("AZURE_RESOURCE_GROUP"), credential=self.credential ) except Exception as e: print(f"Error initializing ModelExplorer: {str(e)}") raise

def list_models_by_category(self) -> Dict[str, List[dict]]:
    """List all available models grouped by category."""
    try:
        # Get all available models
        models = self.client.models.list()

        # Group models by category
        categorized_models = {}
        for model in models:
            category = model.category
            if category not in categorized_models:
                categorized_models[category] = []

            model_info = {
                'name': model.name,
                'version': model.version,
                'description': model.description,
                'capabilities': model.capabilities
            }
            categorized_models[category].append(model_info)

        return categorized_models
    except Exception as e:
        print(f"Error listing models: {str(e)}")
        raise

def display_models(self):
    """Display available models in a formatted way."""
    try:
        models = self.list_models_by_category()

        for category, model_list in models.items():
            print(f"\n=== {category} Models ===")
            for model in model_list:
                print(f"\nName: {model['name']}")
                print(f"Version: {model['version']}")
                print(f"Description: {model['description']}")
                print(f"Capabilities: {', '.join(model['capabilities'])}")
    except Exception as e:
        print(f"Error displaying models: {str(e)}")

Example usage

if name == "main": explorer = ModelExplorer() explorer.display_models()

2. Model Providers

  • Azure OpenAI
  • Third-party providers
  • Custom providers
  • Community models

3. Model Capabilities

  • Task specialization
  • Language support
  • Performance characteristics
  • Resource requirements

Model Selection

1. Selection Criteria

  • Use case requirements
  • Performance needs
  • Resource constraints
  • Cost considerations

2. Comparison Factors

  • Model capabilities
  • Version differences
  • Resource usage
  • Pricing tiers

3. Evaluation Methods

  • Performance metrics
  • Quality assessment
  • Resource efficiency
  • Cost analysis

Model Information

1. Technical Details

  • Model architecture
  • Version history
  • Input/output formats
  • Resource specifications

2. Usage Guidelines

  • Best practices
  • Limitations
  • Performance tips
  • Security considerations

3. Deployment Requirements

  • Resource needs
  • Scaling considerations
  • Integration requirements
  • Monitoring setup

Best Practices

1. Model Selection

  • Define clear requirements
  • Compare alternatives
  • Test performance
  • Consider costs

2. Resource Planning

  • Capacity planning
  • Usage monitoring
  • Cost optimization
  • Performance tuning

3. Documentation

  • Track decisions
  • Document configurations
  • Monitor changes
  • Share knowledge

Interactive Workshop

For hands-on practice with exploring available models in Azure AI Foundry, try our interactive notebook:

Launch Available Models Workshop

This notebook provides: - Comprehensive model listing and filtering - Detailed model information retrieval - Version comparison capabilities - Best practices for model selection - Interactive examples with real-time output

Next: Deploying Models