Building Your Customer Service Agent¶
Let's create a customer service agent that can handle common support scenarios. This will take about 30 minutes.
Quick Implementation¶
```python from azure.identity import DefaultAzureCredential from azure.ai.resources import AIProjectClient from azure.ai.inference import InferenceClient import asyncio import os
class CustomerServiceAgent: def init(self): """Initialize the customer service agent.""" self.client = None self.inference_client = None self.product_docs = { "password_reset": "To reset password: 1) Click 'Forgot Password' 2) Enter email 3) Follow link", "billing": "Billing cycle runs monthly. Payment processed on 1st of each month.", "features": "Product includes: cloud storage, sync, sharing, and admin controls." }
async def initialize(self):
"""Set up the agent with Azure AI."""
try:
# Initialize credentials
credential = DefaultAzureCredential()
# Create AI Project client
self.client = AIProjectClient(
subscription_id=os.getenv("AZURE_SUBSCRIPTION_ID"),
resource_group=os.getenv("AZURE_RESOURCE_GROUP"),
credential=credential
)
# Create inference client
self.inference_client = InferenceClient(
endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
credential=credential
)
return True
except Exception as e:
print(f"Initialization error: {str(e)}")
return False
async def handle_inquiry(self, user_input: str) -> str:
"""Handle a customer inquiry."""
try:
# Create context
context = f"""
You are a helpful customer service agent.
Available product documentation:
{self.product_docs}
User inquiry: {user_input}
Provide a clear, helpful response using the available documentation.
"""
# Generate response using Azure AI inference
response = await self.inference_client.chat_completion(
deployment_name="customer-service-v1",
messages=[
{"role": "system", "content": context},
{"role": "user", "content": user_input}
],
max_tokens=200,
temperature=0.7
)
return response.choices[0].message.content
except Exception as e:
return f"I apologize, but I encountered an error: {str(e)}"
Usage example¶
async def main(): agent = CustomerServiceAgent() if await agent.initialize(): response = await agent.handle_inquiry("How do I reset my password?") print(f"Agent: {response}")
if name == "main": asyncio.run(main())
Key Components¶
- Azure AI Project client
- Azure AI Inference client
- Context management
- Error handling
- Response generation
- State tracking
Best Practices¶
- Project organization
- Resource management
- Error handling
- Testing patterns
- Documentation
- Performance optimization
- Security best practices
- Monitoring setup
Common Implementation Patterns¶
1. Conversation Management¶
- Turn handling
- Context tracking
- State management
- History storage
- Response generation
- Error recovery
2. Azure AI SDK Integration¶
- AIProjectClient setup
- InferenceClient configuration
- Error handling with Azure SDK
- Retry policies
- Circuit breakers
- Fallback strategies
3. Operational Implementation¶
- Monitoring setup
- Logging system
- Performance tracking
- Security controls
- Backup procedures
- Recovery processes
Development Best Practices¶
1. Code Organization¶
- Project structure
- Module design
- Interface definitions
- Error handling
- Documentation
- Testing strategy
2. Quality Assurance¶
- Unit testing
- Integration testing
- Performance testing
- Security testing
- Documentation review
- Code review
3. Performance Optimization¶
- Resource management
- Memory optimization
- Response time
- Error handling
- Caching strategy
- Scaling considerations
Interactive Workshop¶
For hands-on practice with implementing AI agents in Azure AI Foundry, try our interactive notebook:
Launch Agent Implementation Workshop
This notebook provides: - Complete customer service agent implementation - Error handling and best practices - Context management examples - Testing and validation - Enhancement exercises
Next: Deploying and Testing