Skip to content

Building Your Customer Service Agent

Let's create a customer service agent that can handle common support scenarios. This will take about 30 minutes.

Quick Implementation

```python from azure.identity import DefaultAzureCredential from azure.ai.resources import AIProjectClient from azure.ai.inference import InferenceClient import asyncio import os

class CustomerServiceAgent: def init(self): """Initialize the customer service agent.""" self.client = None self.inference_client = None self.product_docs = { "password_reset": "To reset password: 1) Click 'Forgot Password' 2) Enter email 3) Follow link", "billing": "Billing cycle runs monthly. Payment processed on 1st of each month.", "features": "Product includes: cloud storage, sync, sharing, and admin controls." }

async def initialize(self):
    """Set up the agent with Azure AI."""
    try:
        # Initialize credentials
        credential = DefaultAzureCredential()

        # Create AI Project client
        self.client = AIProjectClient(
            subscription_id=os.getenv("AZURE_SUBSCRIPTION_ID"),
            resource_group=os.getenv("AZURE_RESOURCE_GROUP"),
            credential=credential
        )

        # Create inference client
        self.inference_client = InferenceClient(
            endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
            credential=credential
        )

        return True
    except Exception as e:
        print(f"Initialization error: {str(e)}")
        return False

async def handle_inquiry(self, user_input: str) -> str:
    """Handle a customer inquiry."""
    try:
        # Create context
        context = f"""
        You are a helpful customer service agent. 
        Available product documentation:
        {self.product_docs}

        User inquiry: {user_input}

        Provide a clear, helpful response using the available documentation.
        """

        # Generate response using Azure AI inference
        response = await self.inference_client.chat_completion(
            deployment_name="customer-service-v1",
            messages=[
                {"role": "system", "content": context},
                {"role": "user", "content": user_input}
            ],
            max_tokens=200,
            temperature=0.7
        )

        return response.choices[0].message.content
    except Exception as e:
        return f"I apologize, but I encountered an error: {str(e)}"

Usage example

async def main(): agent = CustomerServiceAgent() if await agent.initialize(): response = await agent.handle_inquiry("How do I reset my password?") print(f"Agent: {response}")

if name == "main": asyncio.run(main())

Key Components

  • Azure AI Project client
  • Azure AI Inference client
  • Context management
  • Error handling
  • Response generation
  • State tracking

Best Practices

  • Project organization
  • Resource management
  • Error handling
  • Testing patterns
  • Documentation
  • Performance optimization
  • Security best practices
  • Monitoring setup

Common Implementation Patterns

1. Conversation Management

  • Turn handling
  • Context tracking
  • State management
  • History storage
  • Response generation
  • Error recovery

2. Azure AI SDK Integration

  • AIProjectClient setup
  • InferenceClient configuration
  • Error handling with Azure SDK
  • Retry policies
  • Circuit breakers
  • Fallback strategies

3. Operational Implementation

  • Monitoring setup
  • Logging system
  • Performance tracking
  • Security controls
  • Backup procedures
  • Recovery processes

Development Best Practices

1. Code Organization

  • Project structure
  • Module design
  • Interface definitions
  • Error handling
  • Documentation
  • Testing strategy

2. Quality Assurance

  • Unit testing
  • Integration testing
  • Performance testing
  • Security testing
  • Documentation review
  • Code review

3. Performance Optimization

  • Resource management
  • Memory optimization
  • Response time
  • Error handling
  • Caching strategy
  • Scaling considerations

Interactive Workshop

For hands-on practice with implementing AI agents in Azure AI Foundry, try our interactive notebook:

Launch Agent Implementation Workshop

This notebook provides: - Complete customer service agent implementation - Error handling and best practices - Context management examples - Testing and validation - Enhancement exercises

Next: Deploying and Testing