Drug Development Platform Backend 🧬¶
Overview 🎯¶
Backend for the Drug Development Platform, leveraging Azure AI Foundry SDKs for molecular analysis and clinical trial monitoring.
Azure AI Integration 🤖¶
SDKs Used¶
-
🎯 azure-ai-projects: Project and agent management
-
🔬 azure-ai-inference: Molecular analysis and predictions
-
📊 azure-ai-evaluation: Result analysis and confidence scoring
# automated_testing.py evaluation = Evaluation( display_name="Drug Analysis Evaluation", description="Evaluation of drug analysis outputs", data=Dataset(id=data_id), evaluators={ "f1_score": EvaluatorConfiguration(id=F1ScoreEvaluator.id), "relevance": EvaluatorConfiguration(id=RelevanceEvaluator.id) } )
-
📈 opentelemetry-sdk: Performance monitoring and tracing
-
🔐 azure-identity: Secure Azure authentication
Getting Started 🚀¶
-
Create Virtual Environment:
-
Install Dependencies:
-
Configure Environment:
- Copy
.env.example
to.env
- Update with your Azure credentials:
# Azure Authentication (DO NOT commit actual values!) AZURE_CLIENT_ID=your_client_id_here AZURE_CLIENT_SECRET=your_client_secret_here AZURE_TENANT_ID=your_tenant_id_here # AI Foundry Configuration (use your project-specific values) PROJECT_CONNECTION_STRING=your_connection_string_here MODEL_DEPLOYMENT_NAME=your_model_name_here # OpenTelemetry Settings (adjust based on your environment) OTEL_EXPORTER_OTLP_ENDPOINT=http://localhost:4318 OTEL_SERVICE_NAME=drug-discovery-platform OTEL_RESOURCE_ATTRIBUTES=deployment.environment=development
⚠️ Security Note: Never commit real credentials or sensitive information to version control. Always use environment variables or secure secret management solutions in production.
Required Environment Variables: - AZURE_CLIENT_ID
: Azure AD application ID for authentication - AZURE_CLIENT_SECRET
: Azure AD application secret for authentication - AZURE_TENANT_ID
: Azure AD tenant ID for authentication - PROJECT_CONNECTION_STRING
: AI Foundry project connection string for agent and model access - MODEL_DEPLOYMENT_NAME
: Name of your deployed model for agent creation - OTEL_EXPORTER_OTLP_ENDPOINT
: OpenTelemetry collector endpoint for tracing - OTEL_SERVICE_NAME
: Service name for tracing (default: drug-discovery-platform) - OTEL_RESOURCE_ATTRIBUTES
: Additional tracing attributes (default: deployment.environment=development)
-
Run the Server:
-
Access API Documentation:
- OpenAPI: http://localhost:8000/docs
- ReDoc: http://localhost:8000/redoc
API Architecture 🏗️¶
flowchart TB
subgraph Client
FE[Frontend]
end
subgraph Backend
API[FastAPI]
AI[Azure AI Clients]
TEL[OpenTelemetry]
end
subgraph Azure["Azure AI Foundry"]
PRJ[AI Projects]
AGT[AI Agents]
INF[AI Inference]
EVAL[AI Evaluation]
subgraph Agents["AI Agent Tools"]
BING[Bing Grounding]
FUNC[Function Calling]
CODE[Code Interpreter]
end
end
FE <--> API
API <--> AI
AI <--> PRJ
PRJ <--> AGT
AGT <--> BING
AGT <--> FUNC
AGT <--> CODE
PRJ <--> INF
PRJ <--> EVAL
API --> TEL
Endpoints 🛠️¶
Molecular Design Endpoints¶
1. Analyze Molecule¶
Analyzes a drug candidate's molecular properties using Azure AI Inference.Request:
{
"id": "DRUG-001",
"molecule_type": "Small Molecule",
"therapeutic_area": "Oncology",
"target_proteins": ["EGFR", "HER2"],
"development_stage": "Phase 1"
}
Response:
{
"message": "Molecular analysis complete",
"analysis": {
"efficacy_score": 0.85,
"safety_score": 0.92,
"confidence": 0.89
}
}
Azure AI Agent Endpoints¶
1. Literature Search¶
Uses Azure AI Agent's Bing grounding capability to search and analyze scientific literature.Request:
Response:
{
"query": "EGFR inhibitors in lung cancer",
"summary": "Analysis of recent publications...",
"agent_id": "agent-123"
}
2. Molecule Analysis¶
Uses Azure AI Agent's function calling capability to analyze molecular properties.Request:
{
"smiles": "CC1=CC=C(C=C1)NC(=O)C2=CC=C(Cl)C=C2",
"target_proteins": ["EGFR", "HER2"],
"therapeutic_area": "Oncology"
}
Response:
{
"molecule": "CC1=CC=C(C=C1)NC(=O)C2=CC=C(Cl)C=C2",
"analysis": "Detailed molecular property analysis...",
"agent_id": "agent-456"
}
3. Clinical Trial Data Analysis¶
Uses Azure AI Agent's code interpreter capability to analyze trial data.Request:
Response:
{
"filename": "trial_data.csv",
"analysis": "Statistical analysis and visualizations...",
"agent_id": "agent-789"
}
Clinical Trials Endpoints¶
1. Monitor Trials¶
Real-time monitoring of clinical trial metrics and patient responses.Response:
{
"trial_id": "TRIAL-001",
"phase": "Phase 2",
"status": "Active",
"real_time_metrics": {
"enrollment_rate": 0.75,
"retention_rate": 0.92,
"safety_signals": []
}
}
2. Predict Patient Response¶
Predicts individual patient response using biomarker analysis.Request:
Response:
{
"predicted_response": 0.85,
"confidence": 0.92,
"recommendations": [
"Continue monitoring key biomarkers",
"Schedule follow-up in 2 weeks"
]
}
Automated Testing Endpoints¶
1. Run Evaluation Demo¶
sequenceDiagram
participant Client
participant API
participant Evaluator
participant Dataset
Client->>API: POST /evaluation/run-demo
API->>Dataset: Upload JSONL Data
API->>Evaluator: Configure Evaluation
Evaluator->>Evaluator: Run F1 Score
Evaluator->>Evaluator: Run Relevance
Evaluator-->>API: Results
API-->>Client: Metrics
OpenTelemetry Integration 📊¶
This project uses OpenTelemetry for distributed tracing to monitor and debug the drug development pipeline. Traces help us understand:
- 🔍 Performance bottlenecks
- 🔗 Request flows through the system
- ❌ Error patterns and their context
- 📈 AI model inference timing
Viewing Traces¶
-
Traces are collected by the OpenTelemetry collector at:
-
Key spans to monitor:
molecular_design.analyze
: Molecule analysis and AI inferenceclinical_trials.monitor
: Trial monitoring and metrics-
clinical_trials.predict_response
: Patient response predictions -
Important attributes in traces:
molecule.id
: Unique identifier for drug candidatesmolecule.type
: Type of molecule being analyzedtherapeutic.area
: Target therapeutic areaanalysis.efficacy
: Predicted efficacy scoreanalysis.safety
: Safety assessment scoretrial.id
: Clinical trial identifierpatient.id
: Patient identifier for specific analyses
Example Trace Analysis¶
sequenceDiagram
participant C as Client
participant A as API
participant AI as Azure AI
participant DB as Database
C->>A: POST /molecular-design/analyze
activate A
A->>AI: Analyze molecule
AI-->>A: Inference results
A->>DB: Store results
A-->>C: Analysis response
deactivate A
Security 🔒¶
- Environment Variables:
- All secrets stored in
.env
-
Never commit sensitive data
-
Authentication:
- Azure AD integration
-
Role-based access control
-
Data Protection:
- Encryption at rest
- Secure communication
Contributing 🤝¶
- Fork the repository
- Create a feature branch
- Submit a Pull Request
Setup and Running¶
-
Install dependencies:
-
Start the server (runs on port 8002):
Windows (PowerShell):
Unix/Linux/MacOS:
Environment Variables¶
The backend server uses the following environment variables:
PORT
: Server port (defaults to 8002)PROJECT_CONNECTION_STRING
: Azure project connection stringMODEL_DEPLOYMENT_NAME
: Azure model deployment name- Other environment variables as specified in main.py
API Documentation¶
Once the server is running, you can access the API documentation at: - http://localhost:8002/ (ReDoc interface)
Development¶
The server includes: - FastAPI framework - OpenTelemetry instrumentation - CORS middleware configured for frontend at http://localhost:3000 - Health check endpoint at /health
Deployment with Azure Developer CLI (azd) 🚀¶
-
Install Azure Developer CLI:
-
Login to Azure:
-
Deploy from Root Directory: From the root of "3-e2e-drug-discovery-sample/", run:
This will: - Create Azure Container App for the backend - Configure environment variables from your .env - Deploy the backend service - Output the public endpoint URL
After deployment: - Access API documentation at https://<your-app>.azurecontainerapps.io/docs
- Use the endpoint URL in your frontend configuration